MYF

POJ 1679 The Unique MST

题目链接

POJ 1679

方法:次小生成树

题目分析

题目大意

给出n个点m条边,问所权值等于最小生成树的权重的树是否为一

解析

最小生成树惟一的情况可能有两种

  • 给出的就是一棵树
  • 次小生成树的权值大于最小生成树的权值

要注意,当最小生成树无法生成时要输出Not Unique!

代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
#include <set>
#include <map>
#include <stack>
#include <cmath>
#include <queue>
#include <cstdio>
#include <string>
#include <vector>
#include <iomanip>
#include <bitset>
#include <cstring>
#include <iostream>
#include <iosfwd>
#include <deque>
#include <algorithm>
#define Memset(a,val) memset(a,val,sizeof(a))
#define PI acos(-1.0)
#define PB push_back
#define MP make_pair
#define rt(n) (i == n ? '\n' : ' ')
#define hi printf("Hi----------\n")
#define debug(x) cout<<"Debug : ---"<<x<<"---"<<endl;
#define debug2(x,y) cout<<"Debug : ---"<<x<<" , "<<y<<"---"<<endl;
#define debug3(x,y,z) cout<<"Debug : ---"<<x<<" , "<<y<<" , "<<z<<"---"<<endl;
#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;
typedef pair<int,int> PII;
typedef long long ll;
const int maxn=100000+5;
const int mod=1000000007;
const int INF=0x3f3f3f3f;
const double eps=1e-8;

// 顶点下标1~n
const int Vmax = 1005;
namespace SMST{
// MST
int n;//n个顶点
int s;//起点 树的根
int weight; //MST的重量
int mp[Vmax][Vmax];
int dis[Vmax]; //dis[i]表示指向i点的最短的边
bool vis[Vmax]; //标记该点是否在树上
int pre[Vmax];//记录前驱

//SMST
int subweight; //SMST的重量
bool used[Vmax][Vmax]; //表示当前边有没有被用过
int maxd[Vmax][Vmax]; //maxd[u][v]表示 u-v路径上最大的边权

void init(int Vsz,int source=1){//默认起点为1
memset(mp, INF, sizeof(mp));
memset(dis, INF, sizeof(dis));
memset(used, 0, sizeof(used));
memset(maxd, 0, sizeof(maxd));
memset(vis, false, sizeof(vis));
n=Vsz;
for (int i=0; i<=n; i++) {
mp[i][i] = 0;
}
weight=0;
dis[source] = 0;
pre[source] = source;
}

//1~n的邻接矩阵
void adde(int u,int v,int w){
mp[u][v]=w;
mp[v][u]=w;
}

int prim(){
/*
返回值说明:
-1: 无生成树
weight: 最小生成树的重量
*/

for(int i=1;i<=n;i++){
int pos=0;
int minc = INF;
for(int j=1;j<=n;j++){
if(!vis[j]&&dis[j]<minc){
pos=j;
minc = dis[j];
}
}
if(minc == INF) return -1; //n个点不联通 无生成树

weight+=dis[pos];
used[pos][pre[pos]] = true; // for SMST
used[pre[pos]][pos] = true; // for SMST
vis[pos]=true;

for(int j=1;j<=n;j++){
if (j == pos) continue;
if(vis[j]) {
maxd[j][pos] = maxd[pos][j] = max(dis[pos], maxd[j][pre[pos]]);
}
else if(!vis[j]&&mp[pos][j]<dis[j]){
dis[j]=mp[pos][j];
pre[j]=pos;
}
}

}
return weight;
}

int smst(){
/*
返回值说明:
-1: 无生成树
-2: 有最小生成树 无次小生成树 (比如给出的图即为一棵树)
subweight: 次小生成树的重量
*/
if(prim() == -1) return -1; //无生成树
subweight = INF;
for(int i = 1; i<= n; i++){
for(int j = i + 1; j <= n; j++){
if(mp[i][j]!=INF && !used[i][j]){
subweight = min(subweight, weight+mp[i][j]-maxd[i][j]);
}
}
}
if(subweight == INF) return -2; //只有唯一生成树 也就是说只有最小生成树 没有次小生成树
return subweight;
}
}
int main(){
int u,v,w,n,m,T;
scanf("%d",&T);
while (T--) {
scanf("%d%d",&n,&m);
SMST::init(n);
for (int i=1; i<=m; i++) {
scanf("%d%d%d",&u,&v,&w);
SMST::adde(u, v, w);
}
if (SMST::smst() == -1 || SMST::weight == SMST::subweight) {
puts("Not Unique!");
}
else{
printf("%d\n",SMST::weight);
}
}
}